Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 241(5): 1011-1025, 2024 May.
Article in English | MEDLINE | ID: mdl-38282126

ABSTRACT

RATIONALE: Multiple psychiatric disorders are associated with altered brain and serum levels of neuroactive steroids, including the endogenous GABAergic steroid, allopregnanolone. Clinically, chronic cocaine use was correlated with decreased levels of pregnenolone. Preclinically, the effect of acute cocaine on allopregnanolone levels in rodents has had mixed results, showing an increase or no change in allopregnanolone levels in some brain regions. OBJECTIVE: We hypothesized that cocaine acutely increases allopregnanolone levels, but repeated cocaine exposure decreases allopregnanolone levels compared to controls. METHODS: We performed two separate studies to determine how systemic administration of 15 mg/kg cocaine (1) acutely or (2) chronically alters brain (olfactory bulb, frontal cortex, dorsal striatum, and midbrain) and serum allopregnanolone levels in adult male and female Sprague-Dawley rats. RESULTS: Cocaine acutely increased allopregnanolone levels in the midbrain, but not in olfactory bulb, frontal cortex, or dorsal striatum. Repeated cocaine did not persistently (24 h later) alter allopregnanolone levels in any region in either sex. However, allopregnanolone levels varied by sex across brain regions. In the acute study, we found that females had significantly higher allopregnanolone levels in serum and olfactory bulb relative to males. In the repeated cocaine study, females had significantly higher allopregnanolone levels in olfactory bulb, frontal cortex, and serum. Finally, acute cocaine increased allopregnanolone levels in the frontal cortex of females in proestrus, relative to non-proestrus stages. CONCLUSION: Collectively these results suggest that allopregnanolone levels vary across brain regions and by sex, which may play a part in differential responses to cocaine by sex.


Subject(s)
Cocaine , Pregnanolone , Humans , Adult , Rats , Male , Female , Animals , Rats, Sprague-Dawley , Brain , Mesencephalon , Cocaine/pharmacology
2.
Biomolecules ; 13(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37627270

ABSTRACT

The neurosteroid 3α,5α-THP is a potent GABAA receptor-positive modulator and its regulatory action on the HPA axis stress response has been reported in numerous preclinical and clinical studies. We previously demonstrated that 3α,5α-THP down-regulation of HPA axis activity during stress is sex-, brain region- and stressor-dependent. In this study, we observed a deleterious submersion behavior in response to 3α,5α-THP (15 mg/kg) during forced swim stress (FSS) that led us to investigate how 3α,5α-THP might affect behavioral coping strategies engaged in by the animal. Given the well-established involvement of the opioid system in HPA axis activation and its interaction with GABAergic neurosteroids, we explored the synergic effects of 3α,5α-THP/opiate system activation in this behavior. Serum ß-endorphin (ß-EP) was elevated by FSS and enhanced by 3α,5α-THP + FSS. Hypothalamic Mu-opiate receptors (MOP) were increased in female rats by 3α,5α-THP + FSS. Pretreatment with the MOP antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 2 mg/kg, IP) reversed submersion behavior in males. Moreover, in both males and females, CTAP pretreatment decreased immobility episodes while increasing immobility duration but did not alter swimming duration. This interaction between 3α,5α-THP and the opioid system in the context of FSS might be important in the development of treatment for neuropsychiatric disorders involving HPA axis activation.


Subject(s)
Analgesics, Opioid , Neurosteroids , Female , Male , Animals , Rats , Pregnanolone/pharmacology , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Swimming , Receptors, GABA-A
3.
Front Pharmacol ; 11: 608887, 2020.
Article in English | MEDLINE | ID: mdl-33519475

ABSTRACT

Mesolimbic dopamine transmission is dysregulated in multiple psychiatric disorders, including addiction. Previous studies found that the endogenous GABAergic steroid (3α,5α)-3-hydroxy-5-pregnan-20-one (allopregnanolone) modulates dopamine levels in the nucleus accumbens and prefrontal cortex. As allopregnanolone is a potent positive allosteric modulator of GABAA receptors, and GABAA receptors can regulate dopamine release, we hypothesized that allopregnanolone would reduce phasic fluctuations in mesolimbic dopamine release that are important in learning and reward processing. We used fast-scan cyclic voltammetry in anesthetized female and male rats to measure dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area, before and after administration of allopregnanolone. Allopregnanolone (7.5-25 mg/kg, IP) reduced evoked dopamine release in both male and female rats, compared to ß-cyclodextrin vehicle. In males, all doses of allopregnanolone decreased dopamine transmission, with stronger effects at 15 and 25 mg/kg allopregnanolone. In females, 15 and 25 mg/kg allopregnanolone reduced dopamine release, while 7.5 mg/kg allopregnanolone was no different from vehicle. Since allopregnanolone is derived from progesterone, we hypothesized that high endogenous progesterone levels would result in lower sensitivity to allopregnanolone. Consistent with this, females in proestrus (high progesterone levels) were less responsive to allopregnanolone than females in other estrous cycle stages. Furthermore, 30 mg/kg progesterone reduced evoked dopamine release in males, similar to allopregnanolone. Our findings confirm that allopregnanolone reduces evoked dopamine release in both male and female rats. Moreover, sex and the estrous cycle modulated this effect of allopregnanolone. These results extend our knowledge about the pharmacological effects of neurosteroids on dopamine transmission, which may contribute to their therapeutic effects.

4.
Sci Rep ; 9(1): 17582, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772226

ABSTRACT

Differential mortality rates remain a significant health disparity in the United States, suggesting the need to investigate novel potential molecular markers associated with mortality. Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are lipid-bound vesicles secreted by cells into the circulation. EVs mediate intercellular communication by shuttling functional signaling molecules as cargo. EV characteristics by race in the context of mortality risk factors have not been described. We isolated plasma EVs from a cross-sectional cohort of African Americans (AA) and whites and found no significant differences in EV size, distribution or concentration between race or by sex. However, EV cargo showed increased levels of phospho-p53, total p53, cleaved caspase 3, ERK1/2 and phospho-AKT in white individuals compared to AAs. phospho-IGF-1R levels were significantly higher in females compared to males. EV concentration was significantly associated with several clinical mortality risk factors: high-sensitivity C-reactive protein (hsCRP), homeostatic model assessment of insulin resistance (HOMA-IR), alkaline phosphatase, body mass index, waist circumference and pulse pressure. The association of EV proteins with mortality markers were dependent on race. These data suggest that EV cargo can differ by race and sex and is associated with mortality risk factors.


Subject(s)
Blood Proteins/analysis , Extracellular Vesicles/chemistry , Health Status Disparities , Mortality , Racial Groups/statistics & numerical data , Black or African American/statistics & numerical data , Biomarkers/analysis , Cell-Derived Microparticles/chemistry , Cross-Sectional Studies , Exosomes/chemistry , Female , Humans , Male , Middle Aged , Risk Factors , Sex Factors , United States/epidemiology , White People/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...